Cloud Computing Expands Brain Sciences (2022)

Cloud Computing Expands Brain Sciences (1)

White matter anatomy segmentation using diffusion-weighted magnetic resonance imaging. Major white matter tracts were created using the White Matter Anatomy segmentation App from the brainlife.io platform. Photo courtesy of UT Research Fellow Sandra Hanekamp. Adapted from: Hanekamp, S., Ćurčić-Blake, B., Caron, B. et al. Scientific Reports (2021).

People often think about human behavior in terms of what is happening in the present—reading a newspaper, driving a car, or catching a football. But other dimensions of behavior extend over weeks, months, and years.

Examples include a child learning how to read; an athlete recovering from a concussion; or a person turning 50 and wondering where all the time has gone. These are not changes that people perceive on a day-to-day basis. They just suddenly realize they're older, healed, or have a new development skill.

"The field of neuroscience looks at the brain in multiple ways," says Franco Pestilli, a neuroscientist at The University of Texas at Austin (UT Austin). "For example, we're interested in how neurons compute and allow us to quickly react—it's a fast response requiring visual attention and motor control. Understanding the brain needs big data to capture all dimensions of human behavior."

As an expert in vision science, neuroinformatics, brain imaging, computational neuroscience, and data science, Pestilli's research has advanced the understanding of human cognition and brain networks over the last 15 years.

(Video) AWS Certified Cloud Practitioner Certification Course (CLF-C01) - Pass the Exam!

He likes to compare the brain to the Internet, a powerful set of computers connected by cables simultaneously keeping many windows open and programs running. If the computer is healthy but the cables are not, long range communication between different parts of the brain begins to fail. This in turn creates problems for our long-term behavior.

Pestilli and team are also interested in how biological computations change over longer time periods. Case in point -- How does our brain change as we lose our vision?

"We've shown that if you change the input into the eye, it can change the brain's white matter, which is equivalent to the brain's cabling system—just like computers are connected with cables, our brain has millions of cables connecting millions of tiny computers called neurons."

This visual system research was published in Nature Scientific Reports in March 2021.

BRAINLIFE.IO—WHAT SCIENTISTS NEED TO DO THE SCIENCE THEY WANT

Cloud Computing Expands Brain Sciences (2)

Franco Pestilli, Neuroscientist, Department of Psychology, The University of Texas at Austin

(Video) A brief history of Cloud - Alex Mackey

New cloud technologies are becoming necessary to help researchers collaborate, process, visualize, and manage large amounts of data at unprecedented scales.

A key aspect of Pestilli's work started in 2017 when he received a grant from the BRAIN Initiative through the National Science Foundation (NSF) to launch Brainlife.io. At that time, he was an associate professor in Psychological and Brain Sciences with Indiana University.

The Brainlife.io computing platform provides a full suite of web services to support reproducible research on the cloud. More than 1,600 scientists from around the world have accessed the platform thus far. BrainLife.io allows them to upload, manage, track, analyze, share, and visualize the results of their data.

Currently, the platform serves different communities of scientists from psychology to medical science to neuroscience, and includes more than 600 data processing tools. Brainlife.io integrates different expertise and development mechanisms for making code and publishing it on the cloud—while tracking every detail that happens to the data.

"We've processed more than 300,000 datasets thus far—and we're serving many new users as the number of scientists accessing our platform has exploded during the pandemic," Pestilli said. "A lot of new people came to Brainlife.io because they lost access to their physical facilities."

The platform relies on supercomputing infrastructure to run simulations on high performance computing (HPC) hardware.

"National systems like Jetstream (Indiana University/TACC), Stampede2 (TACC), and Bridges-2 (Pittsburgh Supercomputing Center) are fundamental to what we do. We've received a lot of support the Extreme Science and Engineering Discovery Environment (XSEDE) funded by NSF."

BrainLife.io is also funded via collaborative awards from the National Institutes of Health (NIH) and the Department of Defense.

(Video) Rescale is High Performance Computing Built for the Cloud

Aina Puce is a professor in Psychological and Brain Science at Indiana University. She is a self-proclaimed neophyte with regard to Brainlife.io, yet she is a world expert in neuroimaging, and the principal investigator of an NIH grant that supports the development of neurophysiological data management and analyses on the platform.

"I jumped in at the deep end to help Franco and his team expand the functionality of the platform with neurophysiological data," Puce said.

"Brainlife.io is allowing us to start to perform cutting-edge analyses, integrating neurophysiological data and MRI-based data," she said. "Studies include research explicitly linking brain structure to brain function, such as how information gets transported from region to region, and how blood flow and brain electrical activity change when performing particular tasks."

Soon, a suite of new tools will be available on Brainlife.io for users to integrate EEG (electroencephalography), MEG (magnetoencephalography), and MRI (magnetic resonance imaging) data.

"This is what we are bringing to Brainlife.io for the first time," Puce said.

DATA DRIVES DISCOVERY

The field of neuroscience is moving from small data sets to large data sets. Larger data sets mean that scientists can extract more statistically powerful insights from the information they collect. From 1,000 subjects to 10,000 subjects to 500,000 subjects — the data sets keep growing.

Cloud Computing Expands Brain Sciences (3)

Aina Puce, Eleanor Cox Riggs Professor, Psychological & Brain Sciences, Programs in Neuroscience & Cognitive Science Affiliate, Indiana University / Indiana University Network Institute

(Video) How-to | Alibaba Cloud’s ET City Brain - Empowering Cities to Think

For example, the Adolescent Brain Cognitive Development Study is one of the largest, long-term studies of brain development and child health in the United States. The study is collecting data from over 10,000 adolescent brains to understand biological and behavioral development from adolescence into young adulthood. In another part of the world, the UK Biobank contains in-depth health information from more than 500,000 participants who donated their genetic and clinical data for the good of science; 100,000 of these participants donated brain scans.

"As each new project scales up," Pestilli said, "the size of the data set also scales up, and as a result, the needs for storage and computing change. We're building datasets of a size and impact that only supercomputers can effectively cope. With the recent advent of machine-learning and artificial intelligent methods, and their potential to help humans understand the brain, we need to change our paradigm for data management, analysis, and storage."

Pestilli says that neuroscience research can't survive unless a cohesive ecosystem is built that will integrate the needs of the scientists with hardware and software needs given the tremendous amount of data and the next-generation questions to be explored.

"To make an impact in neuroscience and connect the discipline to the most cutting-edge technologies such as machine learning and artificial intelligence, the community needs a cohesive infrastructure for cloud computing and data science to bring all these tremendous tools, libraries, data archives, and standards closer to the researchers who are working for the good of society," he said.

Fortunately, Pestilli found a like-minded collaborator who shares this vision in Dan Stanzione, the executive director of the Texas Advanced Computing Center (TACC) and a nationally recognized leader in HPC.

Together, they plan to create a national infrastructure that provides a registry for permanent data and analyses records. Researchers will be able to find data and more transparently see the root of how the analysis was conducted. The infrastructure will facilitate what the NSF requires in data proposals, and what researchers want, which is scientific impact and reproducibility.

(Video) Cloud Computing - Big Data and Beyond

In addition, this means that access to data, analysis methods, and computational resources will move toward a more equitable model, providing opportunities for many more students, educators, and researchers than ever before.

"This prospect made me very excited about joining UT Austin," Pestilli said. He re-located to Austin in August 2020, right in middle of the COVID-19 pandemic. Being at UT Austin means collaborating with TACC—a key reason why he accepted a professorship in the Department of Psychology.

"I'm confident that we can get it done—this vision is a crucial part of my efforts here."

FAQs

How did cloud computing change the world? ›

Cloud technology allows businesses to scale and adapt quickly, accelerating innovation, driving business agility, streamlining operations and lowering costs. This will not only help companies get through the current crisis, but it could also contribute to improved, long-term growth.

How does cloud computing impact society? ›

Cloud Computing provides a way for businesses to manage their resources online. It allows the business entities to access their information virtually, whereby, data can be accessed anytime and anywhere. More and more companies are moving towards cloud computing.

Why cloud computing is the best technology? ›

Cost savings: One of the main benefits of cloud computing is that it can help reduce costs. For example, businesses no longer need to invest in expensive on-premises hardware and software. Instead, they can access cloud-based applications and services on a pay-as-you-go basis.

What is cloud and its benefits? ›

Cloud infrastructures support environmental proactivity, powering virtual services rather than physical products and hardware, and cutting down on paper waste, improving energy efficiency, and (given that it allows employees access from anywhere with an internet connection) reducing commuter-related emissions.

How cloud computing is used in future? ›

With cloud computing, resources are available in minutes, which means companies can respond to new market developments much more rapidly. Dovetailed with the inherent agility of cloud resources is DevOps, which realigns software development and deployment to create continuous integration and continuous delivery.

How is cloud computing future? ›

Cloud Computing Adoption Trends

According to Gartner, global spending on public cloud products is growing at an annual rate of 20.4% and is likely to reach $600 billion in 2023. Gartner projects that end-user spending on Infrastructure as a Service (IaaS) is growing at 30.6% year-over-year.

What is the effect of cloud on human lives? ›

Cloud computing has enabled students to access data anywhere and at any time. Students can enrol online and participate in online learning activities. Cloud computing has enabled institutions to use the storage cloud to store large amounts of data securely without installing a complicated and expensive infrastructure.

Why is cloud computing important today? ›

Working With Cloud Service Partners

The main reasons why cloud computing is important for business is that it allows organizations to scale, maintain flexibility, and focus their efforts on business operations – not managing complex IT infrastructure.

How is cloud computing used in everyday life? ›

Everyday life activities such as Banking, Email, Media Streaming, and Ecommerce all use the Cloud. On the Business side, Applications, Infrastructure, Storage, and Sales/CRM all have their presence out in the Cloud.

What is the 5 advantages of cloud computing? ›

Other Important Benefits of Cloud Computing

Offers Resilient Computing. Fast and effective virtualization. Provide you low-cost software. Offers advanced online security.

What are two benefits of cloud computing? ›

Benefits of cloud computing
  • Reduced IT costs. Moving to cloud computing may reduce the cost of managing and maintaining your IT systems. ...
  • Scalability. ...
  • Business continuity. ...
  • Collaboration efficiency. ...
  • Flexibility of work practices. ...
  • Access to automatic updates. ...
  • Also consider...
11 May 2022

What are the 3 common reasons to use the cloud? ›

Let's look at some of the most common reasons to use the cloud.
  • File storage: You can store all types of information in the cloud, including files and email. ...
  • File sharing: The cloud makes it easy to share files with several people at the same time. ...
  • Backing up data: You can also use the cloud to protect your files.

Why is cloud computing used? ›

Cloud Computing allows you to access resources, data, services, and applications from anywhere you want, as long as you are connected to the internet. If you are not connected to the internet, some tools and techniques will allow you to access the cloud whenever needed.

What are pros and cons of cloud computing? ›

A list of advantages and disadvantages of cloud computing:
Advantages of CloudDisadvantages of Cloud
No administrative or management hasslesLimited control of infrastructure
Easy accessibilityRestricted or limited flexibility
Pay per useOngoing costs
ReliabilitySecurity
5 more rows
8 Jul 2016

What are the key features of cloud computing? ›

Top 10 features of Cloud Computers:
  • Self-service On-Demand.
  • Resources Pooling.
  • Easy Maintenance.
  • Economical.
  • Rapid Elasticity and Scalability.
  • Efficient Reporting services.
  • Automation.
  • Security.
18 Apr 2022

What is the next big technology after cloud computing? ›

Hybrid computing

A hybrid cloud is when an application is operated using a combination of different technologies. Hybrid computing solutions are ever-growing in popularity because these days, almost no one relies entirely on just one single cloud solution for everything.

What is the conclusion of cloud computing? ›

Cloud computing will affect large part of computer industry including Software companies, Internet service providers. Cloud computing makes it very easy for companies to provide their products to end-user without worrying about hardware configurations and other requirements of servers.

Is cloud computing a new technology? ›

Cloud computing is a next-generation technology based on the network and internet that delivers IT services like files transfers, software for hire, secure storage, servers for rent, databases, analytics, and intelligence. These flexible resources are enabling faster innovation, and shaping economies.

What is the impact of cloud computing in today's modern world? ›

The scalability of cloud computing allows companies to grow effectively. As the company expands, companies may increase their infrastructure and facilities without having to predict server needs or purchase additional storage capacity.

Why the cloud computing method is famous in the modern world? ›

Cost savings; Cloud computing offers businesses with scalable computing resources hence saving them on the cost of acquiring and maintaining them. These resources are paid for on a pay-as-you-go basis which means businesses pay only for the resources they use.

How cloud computing evolved as most powerful technology in modern world? ›

As computing shifted from the datacenter to the cloud, the high walls have vanished. In the new world, the unwashed masses, everyone (or everyone with a few bucks) can access the magic tools. These tools – data, AI, development, business, media, health, entertainment – are now omnipresent.

What was the most significant change that made the cloud accessible? ›

The most significant change came in the 1990s when the internet bandwidth became significantly large enough to allow a boom in web development. It was in the 1990s that the first enterprise applications were served via a web application by Salesforce that sparked a revolution in application delivery.

Videos

1. Azure Health Data Services - Medical Imaging & DICOM
(Microsoft Azure)
2. Brain Science from Bench to Battlefield: The Realities – and Risks – of Neuroweapons | CGSR Seminar
(Lawrence Livermore National Laboratory)
3. F.Pestilli: Advancing scientific discovery via cloud-based collaboration & open neuroscience methods
(UniTrento Centro Interdipartimentale Mente Cervello)
4. Kevin Micoud Performs Mind-Bending Mentalism - America's Got Talent 2021
(America's Got Talent)
5. Starting your career in cloud from IT
(Google Cloud Tech)
6. Empty Space is NOT Empty
(Veritasium)

Top Articles

You might also like

Latest Posts

Article information

Author: Gov. Deandrea McKenzie

Last Updated: 08/17/2022

Views: 5597

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.